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We analyze the colored-noise problem from the point of view of consistent Markovian approx-

imations.

We extend the “unified colored-noise approximation” of P. Hanggi et al. through its

interpretation as an interpolation procedure between the zero correlation time limit (white noise)
and the infinite correlation time limit. We consider other interpolating functions, obtaining station-
ary probability distributions and the mean first passage time (associated with the lowest nonzero
eigenvalue) and compare with exact numerical results. The potential of this scheme to represent
adequately the results of the colored-noise problem through a convenient choice of the interpolating

function is also discussed.

PACS number(s): 05.40.+j, 02.50.Ey

I. INTRODUCTION

The study of dynamical systems perturbed by noise
is recurrent in many contexts of physics and other sci-
ences. In the theory of nonequilibrium systems especially,
where the macrovariables obey some nonlinear equations
of motion, noise plays an important role. In fact, the sys-
tem can overcome potential barriers and reach different
macrostates only because of the presence of noise.

In particular, in the context of more realistic models of
physical systems, the consideration of noise sources with
finite correlation time (i.e., colored noise) has become a
subject of current study. For example, in describing the
static and dynamical properties of dye lasers it is usual
to model the phenomena in terms of stochastic equa-
tions, where, besides the standard internal white noise,
the system is driven by an external colored-noise [1]. In
a different context, the effect of time correlations in the
fluctuations has also been considered in models of gene
selection [2]. This interest, together with the absence of
exact analytical results, has stressed the need of analyz-
ing from new points of view the colored-noise problem.
Some recent papers and reviews [3—6] offer a view of the
state of the art.

Some authors have focused their efforts on the obten-
tion of Markovian approximations, trying to capture the
essential features of the original non-Markovian problem.
One particular case is the “unified colored-noise approx-
imation” (UCNA) of Hinggi and collaborators [7]. The
aim of this approximation can be understood in the fol-
lowing way. The original formulation of the problem is
in terms of a non-Markovian stochastic differential equa-
tion in the relevant variable. However, this problem can
be transformed into a Markovian one by extending the
number of variables (and equations). The UCNA con-
sists of an adiabatic elimination procedure that allows us
to reduce this extended problem to an “effective” Mar-
kovian one in the original variable space. The ultimate
goal of these procedures is the obtention of a comnsis-
tent single variable Fokker-Planck approximation for the
probability distribution of the original variable. The
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UCNA approximation has been justified as a reliable
Markovian approximation by means of path integral tech-
niques [8].

In this paper, we present an extension of the UCNA,
through its interpretation as an interpolation procedure
between the white-noise limit and the infinite correlation
time limit. Such an interpretation can be more easily
seen using a path integral description of the problem.
The advantages of this procedure consist in the possibil-
ity of devising the interpolating function that best fits
a particular set of experimental data, and in this way
accurately predicting other relevant functions.

The paper is organized as follows: in Sec. II we intro-
duce our interpolation scheme; in Sec. III we present re-
sults of the stationary probability distribution and mean
first passage time for a bistable potential, obtained with
a particular family of interpolating functions; and finally
in Sec. IV we draw our conclusions.

II. INTERPOLATING SCHEME

In the simplest form, the problem of colored noise can
be introduced considering a relevant macrovariable g(t)
that satisfies a stochastic differential equation of the form

4(t) = fla(®)] + (),

where f[g(t)] represents a deterministic force and e(t) in-
dicates the noise. For the particular case of the Ornstein-
Uhlenbeck process, the noise is Gaussian with zero mean,
and correlation

(e(D)e(t)) = 2 exp (—M>

(2.1)

- (2.2)

where D denotes the noise intensity, and 7 is the corre-
lation time.

It is possible to rewrite Eq. (2.1) as a pair of equations
with a white-noise term acting on one of them,
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4(t) = fla(®)] + €(2), (2:3)

and
| é(t) = —e(t)T™1 4+ D727 1¢(1), (2.4)
where £(t) is the white-noise source [(£(t)) = 0,

(E@EE)) = 20(t — t')].

The UCNA results are obtained by differentiating Eq.
(2.3) and replacing in it by Eq. (2.4), setting § = 0
through an adiabatic elimination scheme, and making a
J

oP(q,7,t) _
ot -

scaling of the time variable according to t = t7—1/2. The
result is a multiplicative Markovian process described by

§(t) = f(g)v(q,7) " + D21~ 4y(q,7)7IT(t), (25)

where v(g,7) = [1 — 7f'(¢)]7~/?, and T'(t) is a white
noise (the prime denotes differentiation with respect to

The Fokker-Planck equation (FPE) associated with the
Langevin-like equation (2.5) has the form

a%{[f (@)v(g,7) "t = DT~ 2 (q,7)v(q,7) "*|P(g, 7, t)} + D;—;{[v(q,f)‘zf"” |P(¢,71)}.  (2.6)

The results indicated in Egs. (2.5) and (2.6) configure the UCNA [7].
We now return to Egs. (2.3) and (2.4). It is possible to find the exact behavior for this equation in two limits:
7 — 0 (white noise) and 7 — oo. The results for each case are the following.

(i) 7 — 0: the equation reduces to

q(t) = fla(t)] + DV2¢(), (2.7)
with the associated FPE
P 7] 8%
ABO] o Tla(OPoa,1)} + D5 [Po(a, ) 28)
(ii) 7 — oo: following a procedure similar to the one used for the UCNA we get
q(t) = —fla@®{rf [a@®)]}* = DV {r 5 [a@®)]} 1E®), (2.9)
and the associated FPE
2
OPelel) - _ 0 (( f(q)lrs (@] ~ DI S (@] 1" (@)} Pc(0:0)) + Dprs {lr S (@)] "Poo(a,8)). (210)
q q
I
From a path—integral point of view [9], the Lagrangians and
associated with each of the Langevin equations [(2.7) or
(2.9)] or FPE’s [(2.8) or (2.10)] are the following. ,li{{,‘o 0[5 ()] = —[7f'(9)] 71, (2.15)

(ii) 7 — 0,

Lola,d) = gli— F@P +55@.  (211)
(ii) 7 — oo,
L) = g5l f @i+ S@F — 5 (212)

Similarly, the Lagrangian associated with the UCNA
[Egs. (2.5) and (2.6)] has the form

Lucnale,q) = 4—15{[1 -7 (9l§ — f(@)}*

1 -
+5 [ =7 (@] f(9)- (2-13)
Considering simultaneously (2.11) and (2.12), it is
clear that, if we have a function @[r f'(q)] fulfilling the
limit conditions

lim, Ol f'(9)] = 1 (2.14)

we could define an interpolating Lagrangian according to

. 2
£100) = 354 g ~ 1@} + 3@ @.

(2.16)

This Lagrangian £y in the limits 7 — 0 or 7 — 0o coin-
cides with Lo(g,q) or Loo(g, §), respectively. The corre-
sponding FPE is

g[g%%i)_] _ —;%({ F(@)0[7f'(9)]

+Dale,(q)]0,[Tf’(q)]}PI(q, )
+D§—;{92[Tf’(q)]l’z(q, ). (2.17)

According to this discussion, the UCNA can be inter-
preted as an interpolation in the sense indicated by (2.16)
and (2.17), where
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o f'(@l=01-7f (9]

This alternative point of view introduces new possibili-
ties for finding better Markovian approximations to the
colored-noise problem. This can be achieved through the
definition of an interpolating function that is different
from that of the UCNA, one that is better suited to de-
scribe the dynamics of the system.

In the next section we present an example of a partic-
ular family of interpolating functions that, in some limit,
reduces to the UCNA.

(2.18)

III. STATIONARY DISTRIBUTIONS
AND FIRST PASSAGE TIME

In order to analyze the possibilities of the interpolation
scheme, we will consider the problem of diffusion in a
bistable potential driven by colored noise. We choose
the very well known symmetric potential given by the
expression

Vig) = —laq + bq (3.1)

We introduce the dimensionless variables ¢ — (bg?/a)'/?,
€ — (be?/a®)'/2,t — at, D — bD/a?; and consider a = 1,

b=1.
Remembering that the deterministic force is

v (q)
= — 3.2
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FIG. 1. Bistable symmetric potential. Exact Eq. (3.1)

(solid line), approximate Eq. (3.5) (dotted line).

Eq. (2.1) adopts the form

d=q—q° +¢€t). (3.3)

We consider the family of interpolating functions given
by

T Sk M C))
0[rf'(q)] = TrarfaF

which fulfills the requirements imposed on the limits 7 —
0 and 7 — oo. In the case where ¢ = —1 and n = 2,
it reduces to the UCNA function [Eq. (2.18)]. In our
example, we will only consider n = 2 and different values
of ¢ ranging from —1 to 1.

In order to exploit the numerical procedure introduced
in Refs. [10-12], it is convenient to simplify the form of
the potential, making an approximation in order to cal-
culate the value of the interpolating function. We will
consider a second order approximation of the original po-
tential (3.1) (see Fig. 1):

(3.4)

1| 3 2 1
z[ﬁ_l(q+1) —1], 1< -7
Ulg) = —%[v34%], -7 <9<

(3.5)

With this approximation, the interpolating function be-
comes
1

o0 - 01(r), lalz2 5 656)
0:r) al<
with
01 (7) e [2 = ]2 (3.7)
e |5
and
_1-e ]
02(7) = :c—[7;—]— (3.8)

In the following, we present the results obtained for the
stationary probability distribution (SPD), and the mean
first passage time (MFPT).

No exact expression of the stationary distribution is
known so far in the colored-noise problem. However, with
the interpolation scheme, an approximation can be ob-
tained. In fact, the SPD can easily be found for the FPE
(2.17):

17 f(©
Py(g,7) = [ fl(q)] xP[ / o[t f’(C)]dC] (39)

With the interpolating function [Eq. (3.6)] and integrat-
ing, we obtain
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N V(q)
2D62(r) °XP ['" Dollgr)

Pst(q7 T) =

N V(q)
2D63(r) XP [‘ De,%r)] )

where N is a normalization constant.

Calculations of the SPD for different noise intensities
(D), correlation times (7), and different values of ¢ have
been done, and compared with the exact numerical re-
sults of Ref. [13] and with the UCNA results. In each
case, we find good agreement between our results and
the numerical ones. As an example, the results of the
SPD for the particular D = 0.1, 7 = 0.99, and ¢ = 0.44
are shown in Fig. 2.

As in the case of the UCNA, the interpolation scheme
fails to describe the stationary probability distribution in
those spatial regions or those particular values of ¢ or 7,
which give a negative value of 6[7f'(g)], but this can be
controlled with a suitable choice of c.

In Fig. 3, we plot for the same ¢ = 0.44, the results
of the interpolation procedure for different values of 7.
It is possible to see that the probability in the barrier
zone diminishes as expected when the correlation time is
increased.

We now proceed with the mean first passage time. The
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FIG. 2. Stationary distribution for D = 0.1 and 7 = 0.99.
Exact numerical results of Ref. [13] (solid line); UCNA pre-
diction, Ref. [7] (dashed line); interpolation procedure with
¢ = 0.44 (dotted line).

+35(2-2)] ldz g

(3.10)
lgl< 75

f

exact expression for the MFPT for a particle to reach the
final point x;, when it started at the initial point zo with
constant diffusion coefficient Dy, is (Ref. [14])

T dy /y
T(xo = 1,7) = e P, (2)dz . (3.11
(20 1)‘Lme)mtu (3.11)

In particular, we choose zo = —1 (the left well) as the
initial point, and z; = 0 as the final point (where the
separatrix for small to moderate values of 2« is situated).

We have done calculations based on two different meth-
ods. On the one hand, we have obtained an approximate
value of the MFPT by applying a steepest-descent ap-
proximation. On the other hand, we have obtained the
corresponding MFPT values by doing numerical calcula-
tions Refs. [10-12].

The steepest-descent result, taking into account (3.10)
and (3.11), and making a change of variables to have the
constant diffusion coefficient (Ref. [15]), is
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FIG. 3. Stationary distribution for D = 0.1 and different
values of 7 obtained with the interpolation procedure with
c = 0.44.
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01(1")

T(-1-0,7)=mn [m] v exp [

This result, together with our own numerical calcula-
tions is compared with the exact numerical results of Ref.
[13], for different values of D, and the same values of ¢
obtained for the SPD, in Fig. 4, where we plot the lowest
nonzero eigenvalue A (A = %) A more detailed graph of
the particular case D = 0.1 is presented in Fig. 5, where
the approximations of Refs. [16,17] are also plotted. All
these results show, in general, a very good agreement
with the known exact numerical calculations, indicating
that the present interpolation scheme offers promising
perspectives in this problem.

IV. DISCUSSION

In this paper, we have presented a different point of
view in the colored-noise problem. We have introduced
an extension of the UCNA scheme through its interpre-
tation as an interpolation procedure between the white-
noise and the infinite correlation time limits. We have

In(3)

-10

-12 4

0.0 0.2 0.4 0.6 0.8 1.0 12

FIG. 4. Lowest nonzero eigenvalue of the Fokker-Planck
equation for different values of D, as a function of 7. Ex-
act numerical results, Ref. [13] (solid line); numerical calcu-
lations with the interpolation procedure (circles with dotted
line); steepest-descent approximation with the interpolation
scheme (dashed line). The values of ¢ are ¢ = 0.52 (D = 0.2),
c = 044 (D = 0.1), ¢ = 0.385 (D = 0.05), and
c=0.34 (D = 0.03).

géllg) + 365D (02?7) - 01?7)”

(3.12)

[

particularly studied the relevant case of diffusion in a
bistable symmetric potential. Among all the possible
interpolation functions, we have considered a family of
such functions that, for certain values of the parameters
reduces to the UCNA function [see Eq. (3.4)].

Our main goal has been to show that this interpreta-
tion leads to consistent Markovian approximations to the
colored-noise problem, curing some of the defects of the
UCNA on describing the dynamics of the process. We
have focused on two aspects: the stationary probability
distribution and the mean first passage time.

In order to simplify the numerical evaluation, we have
approximated the original quartic potential with a piece-
wise parabolic one. The calculations of stationary distri-
butions show good agreement with the exact numerical
results [13], and particularly give a better description of
the barrier zone (Fig. 2). The behavior of the stationary
distribution is also good when considering variations of
the correlation time while keeping the value of D (Fig. 3)
fixed. In both figures we see a discontinuity in the first

In(})
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FIG. 5. Lowest nonzero eigenvalue of the Fokker-Planck
equation for D = 0.1, as a function of 7. Exact numerical
results, Ref. [13] (solid line); bridging formulas of Refs. [16]
and [17] (dashed line and dashed-dotted line, respectively);
UCNA prediction, Ref. [7] (dashed and double-dotted line);
steepest-descent calculation within the interpolation scheme
(dotted line).
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TABLE 1. Values of the parameter o for different noise
intensities D. The interpolation values are compared with
those of Ref. [13].

D Ref. [13] Interpolation
0.2 0.21 0.21
0.1 0.13 0.15
0.05 0.10 0.13
0.03 0.07 0.11

derivative of the stationary distribution at the matching
points. This is not due to the interpolation procedure,
but is a consequence of the second order approximation
of the original potential, and can be avoided considering
the exact potential.

The results for the mean first passage time also show
very good agreement with the exact numerical results
[13]. This is due to the improved description of the prob-
ability distribution in the barrier zone. Our method com-
pares favorably with other approximations [16,17].

Concerning the lowest nonzero eigenvalue, we have
also analyzed the value of the Arrhenius parameter o
in A & exp[—ar] for 0.2 < 7 < 1.5, as well as the pa-
rameter 8 in A(T) = A(0)(1 — B7) for 7 — 0. The value
of a approaches a = 0.1 for weak noise and 8 = 1.5.
With the interpolation procedure, the a values obtained
with the steepest-descent approximation are in very good

agreement with those of Ref. [13] (see Table I), while the
B values are not.

The results we have presented here for the interpola-
tion procedure indicate that this is a promising approach.
So far, we have only considered a particular family of in-
terpolating functions that in a certain case reduces to the
UCNA. However, there are several other possibilities; for
example,

(1—ecz)* ™t

0lz] = ,
(2] (1+c2("“1)z2")1/2

(4.1)

with z = 7f'(g).

It is then possible to expect that, applying a certain
measure of craftmanship when devising the function, one
would be able to obtain much better results for the static
(stationary probability distribution) or dynamic descrip-
tion (i.e., first passage time) of the colored-noise problem
in terms of a consistent, satisfactory, Markovian approx-
imation. The analysis of the above indicated possibilities
[Eq. (4.1)] as well as others not indicated here will be the
subject of further work.
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